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distribution. The rapid rise from the minimum for 
cesium suggests a rapid increase in the spectral distribu­
tion. Rubidium indicates a slower increase. Further 
analysis does not seem warranted in this paper. Also no 
procedure is apparent for examining the suggestion by 
Jones9 that the lattice may contribute a linear term to 
the heat capacity and it has been assumed that the 
linear heat capacity is associated with the electrons. 

1. INTRODUCTION 

THE spin-wave theory of the Heisenberg ferro-
magnet, valid at low temperatures, previously 

has been extended to arbitrary temperature by the 
method of double-time, temperature-dependent Green 
functions.1-4 This theory yields both the magnetization 
and the transverse correlation function (Sm^S/), where 
m and p label lattice sites and a, (3 can be either x or y 
(the external magnetic field being parallel to the z axis). 
The longitudinal correlation function (Sm

zS/)—{Sz)2, 
which is somewhat more difficult to analyze, is the 
subject of this paper. 

The longitudinal correlation function is of direct 
physical interest in several connections as, for example, 
the thermodynamic energy and specific heat, the 
magnetic scattering of neutrons, and the magnetic 
susceptibility. 

Several studies of the correlation function have been 
carried out. Van Hove,5 by analogy with the classical, 
phenomenological, Ornstein-Zernicke6 theory of fluctua­
tions, postulated that the longitudinal correlation 
function has the Yukawa form e~Kr/r, both above and 
below the Curie temperature, and thereby analyzed 

* Work supported by the U. S. Office of Naval Research. 
f Senior Scientific Officer, Parkistan Atomic Energy Commis­

sion, Karachi, West Pakistan. 
1 S. V. Tyablikov, Ukr. Mat. Zh. 11, 287 (1959). 
2 R. A. Tahir-Kheli and D. ter Haar, Phys. Rev. 127, 88 (1962). 
3 H. B. Callen, Phys. Rev. 130, 890 (1963). 
4 R. A. Tahir-Kheli, Phys. Rev. 132, 589 (1963). 
5 L. van Hove, Phys. Rev. 95, 1374 (1954). 
6 L. D. Landau and E. M. Lifshitz, Statistical Physics (Addison-

Wesley Publishing Company, Inc., Reading, Massachusetts, 
1958), Sec. 116. 

ACKNOWLEDGMENTS 

We would like to express our appreciation to Dr. R. E. 
Davis, to Mr. Jones and Mr. Farquhar for preparing and 
analyzing the samples of lithium, rubidium and cesium, 
to Dr. D. S. Arnold for his cooperation and interest in 
the research, and to Trona Research Laboratories of 
the American Potash and Chemical Corporation. 

the critical scattering of neutrons. To discuss the same 
problem, De Gennes7 used a generalized (wavelength-

T dependent) molecular field model, and Elliott and 
Marshall8 employed a Bethe-Peierls-Weiss model; these 

^ models give the same functional dependence on distance 
t as postulated by van Hove. However, at low tempera­

tures the spin-wave theory yields a different form, the 
; Fourier transform of the correlation function varying as 

1/k rather than as l/(k2+K2). Recently, Kawaski and 
Mori9 have given a very thorough investigation of the 

[ generalized susceptibility 

t x{k) = A ^ j d\(Sk*S-k*(ih\))-(Sk*)(S-k*)] (1) 

1 for the special case of spin J. Here Sk
z is the Fourier 

transform of Sm
z, Sk

z(ift\) is the Heisenberg operator 
x exp(-AX)5y exp(X3C), and 0= (kpT)~K Although xO) 

is not directly related to the correlation function for 
' general k, in the limit of small k the quantity x(k)/M2£ 

approaches the Fourier transform of the correlation 
, function. Kawasaki and Mori find the functional form 
j 1 / * ( * + K I ) ~ X ( * ) below Tc (with Kl-*0 as T-> Te~), 

agreeing with spin-wave theory in the limit of low k, 
and they find x(k)~\/ (J&+i?) above Tc. 

By a Green function approach, we find the correlation 
function for arbitrary spin. In the limit of low k the 
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The correlation function of the z components (parallel to the net magnetization) of two spins in a Heisen­
berg ferromagnet is computed by a Green function analysis. The results extend spin-wave theory to higher 
temperatures, although they are not satisfactory near the Curie temperature. The Fourier transform of the 
correlation function varies as 1/k for small k, with a more complicated behavior at large k. 
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FIG. 1. Correlation functions for S = J, in the 
face-centered cubic lattice. 

Fourier transform of the correlation function varies as 
1/k, agreeing precisely with spin-wave theory in the 
low-temperature region. The results of the calculation 
are shown in Figs. 1-4, in which we show the transverse 
correlation function for nearest-neighbor spins (Tnn) 
the transverse correlation function for next-nearest-
neighbor spins (rnnn), and the transverse self-correla­
tion (JHOO), as well as the corresponding longitudinal 
correlations (Lnn, Lnnn, and Loo), for spins f, f, §, and 
J, all in a face-centered cubic lattice. The magnetization 
as a function of temperature, as predicted by the Green 
function analysis of Ref. 3, is also shown in Fig. 5. 

The decoupling approximation which we employ to 
terminate the hierarchy of Green function equations is 
that proposed by Callen.3 The range of validity of that 
approximation was clarified by a subsequent study of 
decoupling procedures by Tahir-Kheli.4 The Callen 
decoupling consists of a particular choice of a mass 
operator, whereas an attempt at a more rigorous 
formulation of the Green function theory by Wortis10 

suggests that an additional inhomogeneous term must 
also appear. Tahir-Kheli inverted the problem to 
investigate the form of this inhomogeneous term and of 
the mass operator which would produce optimum agree-

FIG. 2. Correlation functions for S = f, in the 
face-centered cubic lattice. 

10 M. Wortis, Ph.D. thesis, Harvard University, 1963 (un­
published). 

ment with those results known rigorously in the spin-
wave region and in the high-temperature region by 
Opechowski series expansions and Pade extrapolations. 
His results indicate that the form of the mass operator 
assumed by Callen is correct, that the inhomogeneous 
term is large at all temperatures for spin J, but that for 
spin j£\ the inhomogeneous term is small for tempera­
tures appreciably lower than the Curie temperature. 
Hence the simple decoupling procedure used here is 
expected to yield a theory which, for Ss^J, extends the 
region of validity beyond the range of spin-wave theory. 
Our results correspondingly agree with spin-wave 
theory at low temperatures, but they become unreason­
able in the vicinity of the Curie temperature, as 
expected. In particular the longitudinal and transverse 
correlation functions do not become isotropic at the 
Curie temperature in the absence of an applied field. 

2. THE GREEN FUNCTION EQUATIONS 

We consider a system described by an isotropic 
exchange interaction between localized spins, plus the 

T i 1 1 , , , r 

FIG. 3. Correlation functions for S = i, in the 
face-centered cubic lattice. 

Zeeman interaction with an externally applied magnetic 
field H. 

J C = - E /(m-p)S n .S p- / i f l rE5 ,p*- (2) 
m,p p 

Here m and p label lattice sites, J(m— p) is a function 
only of the distance between sites m and p, and /*S is 
the magnetic moment of each site. 

Although we are interested in the quantity (Sm
zSv

z) 
it is convenient to consider the more general quantity 

AW(m-v)^(Sm* expOSp*)). (3) 

By differentiation of A(a) with respect to the parameter 
a and then taking the limit a —» 0 we can obtain the 
desired quantity (Sm

zSp
z). As shown in Ref. 3 the 

introduction of the parameter a facilitates the general­
ization of the Green function formalism to arbitrary 
spin. 
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In order to compute A(o)(m—p) we introduce the 
double-time, temperature-dependent, retarded and 
advanced Green function: 

0>(g,m,p; * - O = «Sg+(0; C<«>(m,p; *')», (4) 

where 

C<«>(m,p; t')^Sm°{t') exp[o5p'(0]5p-(n. (5) 

The Fourier transform GEia){g,m,p), defined by 

<?£<°>(g,m,p) 

i r 
= — / G^(g,m,r,t-t')eiB^-^iH{t-t'), (6) 

obeys8 the equation of motion 

C-E-MH]GBw(g,m,p) 

1 
=— [8,,,0(S)AW (m-g) -5g,m(5m+ exp^, ' ) -? , - ) ] 

2x 

+ 2 £ J(*-t)((St'(f)S,+W-St'(t)St+(t) J 

X O > ( m , p ; 0 » * , (7) 
where 

3 )^=(«r« -1 )5 (5+ l ) + (^~fl+l) ( < r a ~ l ) — . (8) 
da da2 

The higher-order Green functions in the last term of 
Eq. (7) are expressed in terms of lower-order Green 
functions by the decoupling recipe3 

FIG. 4. Correlation functions for S — j , in the 
face-centered cubic lattice. 

(Sm
+ exp05p3)Sp-)k 

= E <Sm+ exp(a5y)S p -y k ^- m ) , (13) 
m—p 

i ( M = £ (exp (aS^SfSm+y* ("-m), (14) 
m—p 

and 

G*<">(ki,k2)s E Gjf^(g,m,p)^ki-to-»)-^-Of-p). (15) 
m fp 

In terms of these quantities, the equation of motion (10) 
implies 

[E-E(k1+k2)]^<«)(k1,k2) 

1 
=— [a)(o)A^(k1)-<5'ai+exp(a5p05,->kt], (16) 

2TT 

({Sm*S+;C})—>(S*)((S+;C)) 
m^p 

2 5 2 
<5m-5p+X(5m+;C», (9) 

whence 

[£-MH]Gi^>(g,m,p) 

=— C8f.iSDWAW(m-«)-8,.»<5m+«p(a5',')5p->] 
2x 

+2<5«>E J(£-DIGE^(g,m,p) -G,w(f ,m,p)] 

(S*> 
E /(g-f)[<5rSg+)G,<»>(f,m,p) 

-<5rA+)G*w(g,ni,p)]. (10) 

In order to solve Eq. (10) we define spatial Fourier 
transforms of all quantities: 

/(k) = / ( - k ) s E /(g-f)e*k-<«-» , (11) 
g-f 

A^a)(k)= E A<a>(m-g)eik'<m-*>, (12) 
m—g 
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FIG. 5. Magnetization as a function of temperature, for various 
spin values, in the face-centered cubic lattice. 
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where 

E(k)=nH+2(S*)J(0,k) 
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+^E/(k' ,k '-k)^(k' lO) (17) 
NS2 k' and 

Jik^^JikJ-Jih). (18) 

where 

The quantities (Sm
+exp(aSp

z)Sf~)k and ^(k,a) are 
related, for permuting the factors in the trace, 

(Sm
+ exTp(aSv

z)Sf-)k 

= (exp(aSp*)SjT exp(-^5C)5m+ exp(^5C))k 

= <exp(a5,
P05,p-5m+(t*p)>k. (19) 

However, if Eq. (26) of Ref. 3 is substituted into Eq. 
(4) of that reference, taking t=if$, we obtain from the 
last form of Eq. (19) 

(Sm+ exp(aSv*)Si-)k==ePEMiP(k,a). (20) 

I t was further shown in Ref. 3 that 

* ( k , a ) = e ( a ) 0 ( k ) (21) 

0(k) = [ ^ a o _ i ] - i ? (22) 

©(a) = £><«>G(a), (23) 

0(a)s<eas«). (24) 

Thus the equation for GE(a)(ki,k2) can be rewritten 

[ E - £ ( k 1 + k 2 ) ] G ^ ^ ( k 1 , k 2 ) 

1 
=—[£> ( f l )A (a) (kx) - @ ( a ) 0 ( k 2 ) ^ k

2 > ] (25) 
2TT 

and, noting that @ (a) = 2(5*), the equation for E(k) 
simplifies to 

£(k)=Mflr+2(5->/(0,k) 
2{SZY 

+ L 0 ( k O / ( k ' , k ' - k ) . (26) 
NS2 v 

The discontinuity of the Green function across 
the real axis (in the E plane) determines the corre­
lation function (Sm

e exp(aSv
z)Sp~~S^')9 or its Fourier 

transform: 

j e ^ C M ^ H £ (Sm*exp(aS/)SfS+) 
m,p 

X g-*kl ' (g-m)—*k2- (g-p) ^ ( 2 7 ) 

The result follows directly from Eq. (25); 

<£(a) (ki,k2) = [3)WAW (ki) - ® (a)<£ (k2)e Wk*>] 
X0(kx+k2) (28) 

We are interested in the special case g=p: 

1 
(Sm* exp(aSv

z)SpSp+) =— £ [SD<<0A<«>(k,) 
TV2 kl,k2 

- 0 (a )0 (k 2 )^ ( k 2) ]0 (k 1 +k 2 )^ -<P- m >. (30) 

In the first term in the summation we make the 
change of variables k 2 ' = k i + k 2 ; in the second term we 
let ki / = k i + k 2 ; and in the left-hand member we use 
the identity 

SvS^SiS+V-S/- CV)2 (31) 

by means of which we can rewrite Eq. (30) in the form 

d d2' r d d*-\ 
5 ( 5 + 1 ) A ^ ( m - p ) 

L da da2A 

= ^ D < f l > A ^ > ( m - p ) - e ( f l ) C « m i p + 0 2 ( m - p ) ] , (32) 

where 
1 

N k 
and 

(34) 0 ( m - p ) = — £ 0(k)6r<k-("-p). 
iNT k 

Finally, by inserting the definition (8) for 3D (a), 
Eq. (32) takes the form 

r d 2 ( l + $ ) 0 a + $ rf "1 
_ _ + . S(S+1) A<«>(m-p) 

Ida2 (l+<f>)ea-$da J 
$Sm*p+02(m-p) 

= 0 (a> • 
l - $ ( e r « - l ) 

The solution of this differential equation is 

A^(m-v) = (SzMa) + \ — <S*)0(a) 

(35) 

L da 

X-
$6m-p+4>2(m-p) 

$(!+$) 
(36) 

or 
1 

<Sm
zexp(aSp2)Sp-Sg+>=— £ [£><«>A<«>(k,) 

iV2 ki,k2 

- e^^CkjO^^^Cki+kz)^1-^111^^'^^. (29) 

That this is, in fact, a solution can be corroborated by 
first noting that the first term of Eq. (36) is a solution 
of the homogeneous equation, as was demonstrated in 
Ref. 3. Introducing the second term of Eq. (36) into 
(35) and multiplying both sides by £(1+$)^—<£>] we 
find a third-order differential equation for 0(a) which is 
recognized as simply the derivative (d/da) of the 
homogeneous equation satisfied by 0(a). We further 
note that the second term in Eq. (36) vanishes as 
a—-»0,. so that A(0)(m—p) = (5*), as required by the 
definition (3). This, plus the boundary conditions 
imposed upon (and satisfied by) O(a) in Ref. 3, deter­
mine Eq. (36) as the appropriate solution of the 
differential Eq. (35). 
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We find (Sm
zSp

z) by differentiation of A (a)(m—p): follows from noting that <j>(m—m)=<£, so that the 
fraction in Eq. (43) reduces to unity when p=m. We 

/e .c *\ l i m V v m PV- t t 'V 1 ( { ^° ^ t h a t *'*' d ° e S r e d U C e t 0 <^2>-<5*>2 f>s 

1 p ; " ^ / ^m ^ " ^ / ^ $(1+*) indicated in Eq. (44), following from Eq. (37) with 
p^rn]y as it should. 

XC$5m,p+02(m— p)]. (37) The Fourier transform of the correlation function 
In Ref. 3 it was shown that ^ (k) = £ ^ ( m - p y *<»-*> (47) 

° ( a ) = [ $ 2 ^ + i - ( i + $ ) 2 ^ i j ( 1 + $ ) ^ _ ^ ( 3 8 ) is then given by 

and ^(k)=^oC$+Lk0(kO0(k-kO]/^(l+$). (48) 

<K2(0) (5 -$ ) ( l+$) 2 ' s + 1 +(5+l+^)^ 2 ' s + 1 Combining these results with the transverse correla-
(S«)= — = — ? (39) t^on function,3 we find the energy per ion as a function 

da (i-f-$)2s+i_<|>2A+i ^ 

whence ~ 

rf20(0) «=<3C>/W = -nH{S°)-J(0)(S>)> <S*)E /(k)*(k) 
<(S3)2>= =S(S+l)-(S*)(l+23>). (40) # k 

/7/r2 

_5(5+l)-<5«>(l+2$+<5*» 1 
Equation (37) can then be written as *C14-*1 iV2 

( 5 . . 5 , , - ( W = | l - ^ ± ^ ^ ± ^ l XE*<k)**0/(k-kO, (49, 
N p / I [(l+^)»w-i-$afi4-ij»j k 'k 

X{$5m' +<t>2(m-p)}. (41) w h e r e (s') i s known in terms of $ [see Eq. (39)] and 
m P ' where, of course, the specific heat c? can be found by 

differentiation of u with respect to T. 
3. THE CORRELATION FUNCTION 

To summarize, the longitudinal correlation function 

^ ( m - p ) ^ m ^ V ) - < S * > 2 (42) 

4. LOW-TEMPERATURE BEHAVIOR 

The function <£ has been analyzed in Ref. 3 and at low 
is given by temperatures 

$5m ,p+02(m-p) 
^ ( m - p ) = ^ ° • , (43) 3TT _ 

* ( ! + * ) ^ = f(f)r s/2+—vmT5 /2+7r2M(l)T^ 

where \//z
0 is the value of ^(m—m) 

4 

+ (3/2S)«f (§)f (*)rH-0(r«*), (51) 

where r is of the order of ST/TC, being given by the 
(25+l)2$2S+1(l+«')2S+1 relation 

= * ( 1 + * ) - [ ( 1 + # ) 2 S + 1 _ $ 2 S + 1 ] 2 • (44) r = [ ( V 3 W ( 0 ) 5 , ] - ' . (52) 

The quantity * is the average value of the quasiboson a a n d " a r e c o n s t a n t s d e f i n e d i n R e f- 3> *"* 
occupation number <£(k): ^ 

f (w) = E ~̂~w exp(-npnH). (53) 
J- «=i 

* = - E * ( k ) (45) 
TV k As $<^1, we can expand Eq. (44) in powers of <£: 

0(k) = [ ^ w - l j - i (46) ^ 0 

and * (m-p) is the Fourier transform of *(k): J ^ f ^ ( 2 ^ + 1 ) 2 $ 2 ' + ( ^ + 1 ) 2 ( ^ + 2 ) ^ 2 W 

i + 0 ( $ ^ ) ( (54) 

0(m-p)=—E^(k)e- i k-<m-P>=0(p~m). (47) __ , , ( . +u , . . . 
N k The expansion of ^2 (w—^) therefore requires only the 

calculation of <f>(rn—p) in a temperature series. By 
The identification of ^2° as the value of ^(m—m) standard expansion methods as used in the theory of 
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spin waves, we find for the simple cubic lattice: 

0( f . )=Z3 / 2(O)r3 '2+-rW2[3Z5 / 2(O)-Z6 / 2(l)+1LZ6 / 2(2)] 
4 

+-
v% r33 35 11 
-M —ZVi(0) Zvt(l)+—Zm(2) 
6 l_2 3 4 16 

11 
—Z7/2(3) + 
60 

1 -l / 5 \3TT 
—Z 7 / 2 (4 ) + Z 8 / , ( 0 ) f ( - - r 
288 J \2/2S 

where 
+O(T^ZV2(0)) , (55) 

Zm(x) = ( — ) L n-m~xexpf -nPixH— )rxr*x, 
\fJ — I < • 

I 

/w / 

/ = 1 — f ( l ) r 6 ' 2 - 0 ( r 7 / 2 ) , 

and where 
ra= |m—p| 

(56) 

(57) 

(58) 

(a is the lattice constant). 
The corresponding expressions for <£(m— p) for other 

cubic lattices are similar in structure and will not be 
given here. In the limit of small r (i.e., |m—p| of the 
order of a few lattice constants) the coefficients Zm(x) 
can be expanded in powers of rr2, giving 

/2TT\X T x 
£»(*) = ( — ] (rrM l{m+x)--rr^{m-\-x+l) 

f 

~B + - ( - ) (™"2)2f ( « * + * + 2 ) + 0 ( T V 6 ) | (59) 

and correspondingly 

^ ( m - p) = [1 - (2S+1) 2<J?2S+ 2 (5+1) (25+1) 2*2S+1 

+0($2S+8)]r$5m,P+ j^-r^rf (f)- .7/2 

+- r7/2, ?(*) VfrVV'fG )+• .(60) 

When \m—p\ is larger than a few lattice constants, the 
coefficient Zm(x) is best calculated by the Euler-
Machlaurin sum formula. In the limit ftuTT<<Cl and rS>\ 
the result is particularly simple: 

/ 4 T I V /<* \ m + a ^ 3 / 2 1 / 4 T I V / ^ V 
Z m (x )~f — J ( r r2)Vl/2(_1)m+^3/2r _ \ 

y/ci 
(61) 

where a = r V r / / , whence 

4>(m- ^ — r C ^ + i r - 3 ] , ( r » l , ftxiT<<l). (62) 

5. CONCLUSION 

In the homogeneous decoupling approximation here 
employed the longitudinal correlation function depends 
on the spatial separation of the spins through a single 
factor (j>(m—p). This factor is the Fourier transform of 
the quasi-spin-wave occupation number [exp(J3E(k) 
— I ] - 1 . The transverse correlation function (Sm

xSp
x) 

is also simply (Sz)cl)(m— v)+i(Sz)dm>1?. 
The longitudinal correlation function reduces properly 

to ((SZ)2)—(SZ)2 when m = p ; its asymptotic limit for 
large |m— p | is exp(— 2K- (m— p))/ |m— p | 2 whereas 
that of the transverse correlation function is 

e x p ( - K - ( m - p ) ) / | m - p | . 

Near the Curie temperature the decoupling approx­
imation is inadequate, and we accordingly find that the 
longitudinal and transverse correlation functions do not 
become isotropic at Tc. Thus, from Eq. (41) we easily 
find 

(Sm'Sj?) (Sm*Sp*) 0 ( m - p ) 
— = • > • . (63) 

<Sm*V> W ( m - p ) T - * T < $ 

Now $(m— p) —> 0 as |m—p| —> <*>, so that the corre­
lation function becomes increasingly anisotropic for 
large distances, at Tc. Presumably the analysis is a 
reasonable approximation at temperatures above the 
spin wave region, but it is clearly not adequate near Tc. 

At low temperatures the correlation function agrees 
with the first order Born approximation renormalization 
of spin wave theory, as given by Dyson,11 for all spins 
other than S=J. 

The transverse correlation functions (Too, Tn n , and 
Tnnn) and longitudinal correlation functions (Too, 
T n n and Tnnn) corresponding to the self-correlation, 
nearest-neighbor spins, and next-nearest-neighbor spins, 
are shown for several spin values in a face-centered 
cubic lattice in Fig. 1-4. The magnetization as a func­
tion of temperature, predicted by the Green function 
analysis of Ref. 3, is also shown in Fig. 5. 
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